TRACTATUS on disjoint matchings in cubic graphs
نویسندگان
چکیده
In early 70s Berge conjectured that any bridgeless cubic graph contains five perfect matchings such that each edge belongs to at least one of them. In 1972 Fulkerson conjectured that, in fact, we can find six perfect matchings containing each edge exactly twice. By introducing the concept of an r-graph (a remarkable generalization of one of bridgeless cubic graph) Seymour in 1979 conjectured that every r-graph contains 2r perfect matchings such that each edge belongs to exactly two of them. We investigate the following problem: what is the percentage of edges of a cubic graph that we may hope to cover by its k matchings. The investigation of this problem in the class of bridgeless cubic graphs has led us to new conjectures and interesting examples of cubic graphs.
منابع مشابه
On disjoint matchings in cubic graphs: Maximum 2-edge-colorable and maximum 3-edge-colorable subgraphs
We show that any 2−factor of a cubic graph can be extended to a maximum 3−edge-colorable subgraph. We also show that the sum of sizes of maximum 2− and 3−edge-colorable subgraphs of a cubic graph is at least twice of its number of vertices.
متن کاملOn a family of cubic graphs containing the flower snarks
We consider cubic graphs formed with k ≥ 2 disjoint claws Ci ∼ K1,3 (0 ≤ i ≤ k−1) such that for every integer i modulo k the three vertices of degree 1 of Ci are joined to the three vertices of degree 1 of Ci−1 and joined to the three vertices of degree 1 of Ci+1. Denote by ti the vertex of degree 3 of Ci and by T the set {t1, t2, ..., tk−1}. In such a way we construct three distinct graphs, na...
متن کاملOn family of cubic graphs containing flower snarks
We consider cubic graphs formed with k ≥ 2 disjoint claws Ci ∼ K1,3 (0 ≤ i ≤ k−1) such that for every integer i modulo k the three vertices of degree 1 of Ci are joined to the three vertices of degree 1 of Ci−1 and joined to the three vertices of degree 1 of Ci+1. Denote by ti the vertex of degree 3 of Ci and by T the set {t1, t2, ..., tk−1}. In such a way we construct three distinct graphs, na...
متن کاملCubic Graphs, Disjoint Matchings and Some Inequalities
For k = 2, 3 and a cubic graph G let νk(G) denote the size of a maximum k-edge-colorable subgraph of G. Mkrtchyan, Petrosyan and Vardanyan proved that ν2(G) ≥ 4 5 · |V (G)|, ν3(G) ≥ 7 6 · |V (G)| [13]. They were also able to show that ν2(G) + ν3(G) ≥ 2 · |V (G)| [3] and ν2(G) ≤ |V (G)|+2·ν3(G) 4 [13]. In the present work, we show that the last two inequalities imply the first two of them. Moreo...
متن کاملA New Lower Bound on the Number of Perfect Matchings in Cubic Graphs
We prove that every n-vertex cubic bridgeless graph has at least n/2 perfect matchings and give a list of all 17 such graphs that have less than n/2 + 2 perfect matchings.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0803.0134 شماره
صفحات -
تاریخ انتشار 2008